Assignment 5

This homework is due Friday Feb 27.

There are total 45 points in this assignment. 40 points is considered 100%. If you go over 40 points, you will get over 100% for this homework (but not over 115%) and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper *and give credit to your collaborators in your pledge*. Your solutions should exhibit your work and contain full proofs. Bare answers will not earn you much.

This assignment covers Sections 2.5–3.2 of Textbook.

- (1) [10pt] Find the images of the mapping w = 1/z in each case, and sketch the mapping.
 - (a) The horizontal line $\{(x, y) : y = \frac{1}{4}\}$.
 - (b) The vertical line $\operatorname{Re}(z) = -3$.
 - (c) The circle $C_{\frac{1}{2}}(-\frac{i}{2}) = \{z : |z + \frac{i}{2}| = \frac{1}{2}\}.$
 - (d) The circle $\tilde{C_1(-2)} = \{z : |z+2| = 1\}.$
 - (e) The line 2x + 2y = 1.
- (2) [5pt]
 - (a) Show that transformation w = 1/z maps the vertical strip given by $0 < x < \frac{1}{2}$ onto the region in the right half-plane $\operatorname{Re}(w) > 0$ that lies outside the disk $D_1(1) = \{w : |w-1| = 1\}$.
 - outside the disk $D_1(1) = \{w : |w-1| = 1\}$. (b) Find the image of the disk $D_{\frac{4}{3}}(\frac{-2i}{3}) = \{z : |z + \frac{2i}{3}| < \frac{4}{3}\}$ under f(z) = 1/z.
- (3) [5pt] Prove the following directly by computing the limit in the definition of the derivative.
 - (a) $(z^3)' = 3z^2$.
 - (b) $\left(\frac{1}{z}\right)' = \frac{-1}{z^2}$.
- (4) [5pt] Find the derivative of the following functions using rules of differentiation.
 - (a) $(z^2 iz + 9)^5$. (Simplifying the answer is not necessary.)
 - (b) $\frac{2z+1}{z+2}$.

(c)
$$(z^{2+2} + (1-2i)z + 1)(z^{2} + 3z^{2} + 5i).$$

- (5) [10pt] Use the Cauchy–Riemann conditions to determine where the following functions are differentiable and evaluate the derivatives at those points where they do exist.
 - (a) $f(z) = f(x, y) = \frac{y+ix}{x^2+y^2}$. (b) $f(z) = -2(xy+x) + i(x^2 - 2y - y^2)$. (c) $f(z) = x^3 + i(1 - y^3)$. (d) $f(z) = x^3 - 3x^2 - 3xy^2 + 3y^2 + i(3x^2y - 6xy - y^3)$. (e) $f(z) = x^2 + y^2 + 2ixy$.
- (6) [5pt]
 - (a) Use any method to show that the function $h(z) = e^y \cos x + ie^y \sin x$ is not differentiable anywhere.
 - (b) Show that the function $g(z) = \cosh x \sin y i \sinh x \cos y$ is entire.
- (7) [5pt] Let f and g be analytic functions in the domain D. If f'(z) = g'(z) for all z in D, then show that f(z) = g(z) + C, where C is a complex constant. (*Hint:* Consider f g. Or, look at Re and Im separately and use "usual" multivariable calculus.)